核密度图

目录

数据格	式	. 1
计算步	骤	. 2
1.	数据准备	. 2
2.	选择核函数	. 2
3.	选择带宽	. 2
4.	计算核密度估计	. 2
5.	绘制图	. 3

核密度图是一种可直观查看数据分布的图形工具,它通过平滑数据点来创建一个连续的概率密度函数,从而帮助我们更直观地理解数据的分布情况。在 SPSSAU 中支持:

- ✓ 批量放入'标题'进行绘制;
- ✓ 支持放入分类项(比如性别),绘制不同类别情况下的核密度图;
- ✓ 支持选择不同的核函数;
- ✓ 系统自动设置带宽值h,同时也支持自定义带宽值h。

	开始分析	h带宽值	核函数	~
		X 【定类, 可选】		
)				
		Y(定量)		

数据格式

Х	data1	data2	data3
А	81.3282	75.93940353	5.239129333
А	28.9825	85.50764657	77.36784448
А	27.8162	53.62511055	58.55069696
А	66.5765	27.41458722	60.26764323
В	78.4136	15.56179381	46.08047493
В	45.5203	27.3542373	87.78188518
В	82.6031	80.5082716	21.16291234
В	53.1135	35.59697641	57.68042561

数据中包括1个Category以及分析数据(当然分析时可以不放入Category)。

计算步骤

- 1. 数据准备 收集一组样本数据 $x_1, x_2, ..., x_n$ 。
- 2. 选择核函数

选择一个适当的核函数K(x),满足 $\int_{-\infty}^{\infty} K(x) dx = I$ 。SPSSAU提供的核函数包 括均匀核 (Uniform)、三角核 (Triangular)、二次核 (Epanechnikov)、四次核 (Quartic)、高斯核 (Gaussian) 和余弦核 (Cosine), 默认是高斯核 (Gaussian)。关于核函数的计算公式,如下:

核函数	公式
均匀核 (Uniform)	$\frac{1}{(1-1)!} x \in [-1,1]$
	$K(x) = \{2^{n-1}, \dots, n-1\}$ 0, 0 thers
三角核 (Triangular)	<i>K</i> (<i>x</i>) = { $l - x , x \in [-1, l]$ <i>0</i> , 其它
二次核 (Epanechnikov)	$K(x) = \{\frac{3}{4}(1 - x^2), x \in [-1, 1]\}$
	0,0thers
四次核(Quartic)	$K(x) = \{\frac{15}{16}(1-x^2)^2, x \in [-1,1]\}$
	0, Others
高斯核(Gaussian)[默认]	$K(x) = \frac{l}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in R$
余弦核 (Cosine)	$K(x) = \{\frac{\pi}{4} \cos \frac{\pi}{2} x, x \in [-1, 1] \\ 0 \text{ Others} \}$
2 冲起推动	0, others

3. 选择带宽

选择一个合适的带宽h>0,控制核函数的平滑程度。带宽越小,估计越不平滑; 带宽越大,估计越平滑。SPSSAU默认使用'Silverman 大拇指法则'法计算h值,其 计算公式如下:

$$h = \left(\frac{3 \times n}{4}\right)^{-\frac{1}{5}} \times \min\left(s, \frac{IQR}{1.35}\right)$$

其中:

S是样本标准差 IQR是四分位距 n是样本量 min为取二者的较小值

4. 计算核密度估计 对于任意x,核密度估计 $\hat{f}(x)$,定义为:

$$\hat{f}(x) = \frac{l}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

5. 绘制图

将f(x)对x作图,即得核密度图。

spsall.on